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1. Introduction 

Among  the so-called strong ligand field models  one may distinguish between 
different models  that are more  or less sophisticated. For cubic symmetries these 
are with decreasing complexity: 

(i) the molecular  strong field using ten coulomb parameters  a, b . . . . .  /' [1]. 

(ii) the Koide and Pryce model  [2].where the ten parameters  are reduced to 
four, namely Racah ' s  A, B, C and a covalency paramete r  e which can be 
considered as a measure  of the difference in expansion between t2 and e orbitals. 
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Table 1. Connection between the Koide-Pryce and the 
molecular strong field parameters 

Molecular orbital 
Koide and Pryce model general approach 

(e, e) = (a -8B +~C) (e -~f) 
(e, tz) = (1 -e)(A -B  +~C) (d +c _lg -~h) 
(t2, t2) = (1 - e ) 2 ( A  - 2 B  + C) �89 + 4b -2]) 

The well-known connection between the two sets of parameters is given in Table 
1; in tetrahedral symmetry, one has nt~ = 1 - e  and ne = 1. 

(iii) the ionic strong field model which is equivalent to the last one with e = 0. 

One should notice that, while e equals at most a few percent, the difference in 
order  between A (a few 10 eV) and B or C (fractions of 1 eV) makes the e 
contribution an essential part in the parametrization. Evidently all models require 
also the crystal field parameter  10 Dq or A and if spin-orbit  effects are not 
neglected, two or one spin-orbit  parameters.  

The purpose of this paper is not to develop a new method but to see what 
connections can be found between the crystal field and the MS Xoz models 
applied on transition metal complexes. As the MS Xa method is a molecular 
one, it is obvious that the only crystal field model which can be compared is the 
Koide and Pryce one. In fact, the covalency is not taken into account in the 
ionic strong field model while the molecular strong-field method employs too 
large a set of parameters which cannot be accessible from a few Xa calculations 
on different configurations. 

For  the sake of clarity, we will restrict the discussion to a d 2 configuration in 
tetrahedral symmetry (Fig. 1); later we will emphasize, when necessary, the 
results which are general for any configuration. In the following, like most authors 
[3], the 10 Dq parameter  is defined as 10 Dq(1) = (t2) - (e), the difference between 
the one electron energies, and not as the difference between triplets [4] like 
10 Dq(2 )=  3T2-3A2 (see Fig. 1), which is directly obtained by experiment. In 
fact, one can connect the two definitions for d 2 system: 

10 Dq(2) = 3T2-  3A2 = 10 Dq(1) + d  - c  - g  - 3 h  - e  + 3 f  

according to the molecular strong field theory and 

10 Dq(2) = 10Dq(1) + e (1 - e )  ( A -  8B) 

according to Koide and Pryce's model. 

2. Determination of Mono- and Bielectronic Integrals From X a  Calculations 

Slater [5] showed that, for a given configuration, the Xt~ total energy can be 
approximated by an expression identical to the H H F  (hyper Har t ree-Fock)  total 
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Fig. 1. Multiplets of tetrahedral  metal  complex N = 2 
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energy,  i.e., (Ex,~)~ (EHHF). One  has 

(Ex,,)  = Z " 1 ni(t)+~Y~ n i ( n i -  1)(i, i ) +  Y~ nlni(i , j )  (1) 
i i i ~ i  

where  (i) and (i, i) are m o n o -  and bielectronic integrals, nl occupat ion  numbers .  
�9 �9 Xce One  knows that  in X a  formalism, the elgenvalues are gwen  by e i = & (Ex~)/&ni; 

consequent ly ,  if one  considers that  e and t2 orbitals do not  relax when  their 
occupat ion  numbers  are varied, (which is easy to admit  because  no charge transfer  
occurs in the complex),  one  obtains 

x~ 8Ex,~(e"tm) 
e i i = e, t2 (2) 

8n~ 
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or more explicitly 

eXe~(n) = (e) + (n -~)(e, e) +m (t2, e) (3) 

e x~ (m) = (t) + (m - 21-)(t2, t2) + n (e, t2) (4) 

with N = n + m, total number  of d electrons in the configuration d ~. 

One obtains two linear relations: 

eX~(n)=a~+ben,  eX ~(m)=a , +b , m  (5) 

which can be fitted from X a  eigenvalues obtained in different configurations 
calculations. It is then easy to deduce from the four parameters set: 

(i) The 10 Dq parameter:  

1 0  D q ( 1 )  = (t2) - ( e )  = ( a ,  - a ,  ) + ~ ( b ,  - be ). (6)  

(ii) The Koide and Pryce covalency parameter:  
From Eqs. (4.5) and the method of average configurations [5, 6] we have 

(e, e ) -  (tz, e) = be = [ a  + 4 ( C -  2 B ) ] - ( 1  - e ) [ a  + ~ ( C -  2B)] (7) 

(t2, t2)-(t2,  e ) =  bt = [ a  + ( C - 2 B ) ] ( 1 - e ) Z - ( 1 - e ) [ a  + � 8 9  2B)]. (8) 

As A >> B, C and e << 1, one obtains 

(e, e ) - ( t2 ,  e ) = e A  + ~ ( C -  2B) 

(t2, te) - (t2, e) = �89 - 2B) - eA 

so that 

e a  = �89 - 5b,) (9) 

leading to e from a given value of the Racah parameter.  One should note that 
in the ionic strong field model, e - 0, then one has 

(e, e ) - ( t 2 ,  e) = 5 / 6 ( C - 2 B ) ,  (t2, t2)-(t2,  e) = 1 / 2 ( C - 2 B )  

so that one always has (e, e) > (t2, t2) > (t2, e) which is not fulfilled if e ~ 0 (see 
part 3). 

The linear relations (3--4) can also be applied to ionization in which case one 
no longer has constant n + m, but n varying with constant rn and vice versa. It 
should be noted that in this case orbital relaxation should occur and one could 
expect a deviation from linearity larger than in Eqs. (3, 4). In particular, if one 
considers the ionization of the e"t ~ configuration one obtains 

ex'~(n) (e)+(n 1 - ~)(e, e) (10) 

and simultaneously, for this same configuration 

e, ( m ) - ( t z ) - ~ ( t z ,  t2)+n(t2, e). (11) 

The linear fits give directly the (e, e), (e) and (t2, e) integrals. It is then possible 
to obtain (t2, t2) and (t2) from Eqs. (4) and (11), while (t2, e) can alternatively 
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be obtained by Eqs. (3) and (10) and (10) Dq from the just calculated values of 
(t2) and (e). 

A general formula to obtain 10 Dq from any two different configurations e n t ~  
n'  m'  

and e t2 of X a  calculations can be given: 

(t2) - (e) = [ (2n ' -  1)ee (n) - (2n - 1)ee (n') + ( 2 m ' -  1)e,(m) 

- (2m - 1)e t (m') ] /2(n ' -  n). (12) 

The "Sambe and Felton special configurations": It is evident from Eqs. (3) and 
(4) that one obtains directly 

10 D q =  ( t2 ) - (e )=  e X ~ ( m * ) - e X ~ ( n  *) (13) 
rt* m* for a particular configuration e t2 if the other terms from Eqs. (3) and (4) 

can be annulled, i.e.: 

( m  * - �89 t2, t2) - (n * - �89 e ) - (n * - m *)( tz, e)  = O. 

In ligand field formalism, this requires according to the N = m* + n* relation that 

e[N(1 - e ) + 2 n * + n * e  +(1 - e/2)] = 0 (14a) 

to set to zero the Z coefficient and 

~(3N - 8n * + 1) + e / 2 ( 2 n *  - 3 N  + 1) + e E ( N  - n *  - 1) = 0 (14b) 

to set to zero the coefficient of ( C -  2B). 

It is clear that in the ionic strong model (e = 0), the "Sambe and Felton" [6] 
configuration n* = (3N + 1)/8 allows the 10 Dq to be obtained directly from the 
difference in the t2 and e eigenvalues, however, this is not true as soon as e # 0. 
Consequently, the Sambe and Felton approximation should lead to a less precise 
value of 10 Dq than the other relations. 

Spin polarized calculations of CrC14: 

Similar results can be obtained in the spin polarized framework. For instance, 
n O  O 0  Eqs. (10) and (11) become for e d t e ~ t 2 ~ :  

X a  1 
e r = (et)  - ~(et ,  e t )  + n (e t ,  e t )  

X a  1 
e,+ = (e+)-~(e+,  e+) + n ( e  t ,  e+) 

x~ (15) 
e ,+ = (t21") - ~(/2t, t2t) + n (ea,, tEt) 

Xot 
e ,~ = (t2~) - ~(tz$, t25) + n (e t, t25). 

It is then possible to determine spin polarized integrals and one electron orbitals 
energies. However, these quantities cannot be connected easily to ligand field 
parameters because the ligand field theory is built on a restricted atomic scheme, 
i.e., the equality (dr, di.), (d$, d~) is assumed which is not the case in Eq. (15). 
Furthermore, as the molecular ligand field parameters (Griffith's parameters) do 
include more than is assumed by the theory (as is always the case in parametrized 
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calculations), difficulties should appear if one tries to obtain a linear dependence 
between Griffith's parameters and spin polarized (MS)Ca) integrals. In fact, if 
one admits (dr, d r ) - (d~ ,  d~) only two parameters, namely e and f, can be 
determined, as one gets to use the method of the average configuration in the 
polarized case [8]: 

(et, et) = e - 3f, (et, e~) = e - f ,  (16a) 

Some combinations of Griffith's parameters can also be obtained, namely (c + d) 
and (g + h), with 

(et, t2t) = (c + d ) -  (g + h ), (e t, t21) = (c + d) (16b) 

are evidently (b - / )  and (a + 2b) with 

(t2t,  t2t)  = (b - ] ) ,  (t2t,  t25) = �89 + 2b). (16c) 

But, one has to remember  that all these equations assume the unsatisfied equality 
(dr, dr) = (d~, d~). 

Numerical values on CrCI4, presented in the next section, will point out the 
limitation of such equations. 

3. Numerical Results of CrCI4 Complex (d 2) 

SCF MS Xo~ calculations have been performed on CrC14 with the parameters 
set used in a previous work by Weber  and Daul [7]. 

The linear dependence (3-5) of the X a  eigenvalues on the occupation numbers 
is displayed on Table 2 and Fig. 2 while the corresponding fits are 

e ~x~ (n) = -7 .1464  + 0.165 ln, eX~(m) = - 5 . 7 9 2 9 -  0.1379m. (5') 

According to Eq. (6), one obtains 10 Dq  = 1.202 eV while the special configur- 
ation of Sambe and Felton (n*=  0.88) gives from Eq. (13) 10 D q =  1.055 eV 
(which are to be compared with ligand field parameter [7] 10 D q =  2.33 eV). 

Table 2. Energies of RSCF-Xa  excited configurations e"t(2N-") for CrC14 

Configuration e x~ (eV) e x,~ (eV) e x~ _ e x~ (eV) 

eZt ~ -6 .8138  -5 .7913 1.0225 
el"St ~ -6 .8458  -5 .8176  1.0282 
e a'65t~ -6 .8729  -5 .8401 1.0328 
e 1"5t~ -6 .8996" -5 .8625 1.0371 
e l2s t~  -6 .9430  -5 .8987 1.0443 
e 1.ot~.o -6 .9851 -5 .9340  1.0511 
e~ -7 .0050  b -5 .9500  1.055 
e~ "5 -7 .0654  a -6 .0012 1.0642 
e~ ~ -7 .1404  -6 .0639  1.0765 

a Slater transition states. 
b Sambe and Felton special configuration for d 2. 
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A n d  also f rom Eq. (9) one  obtains  eA = 0.148 eV. If one  takes A = 16.2 eV [7] 
one  obtains  e - 0 .009 in good  ag reement  with the usual values of this parameter .  
Not ice  that  this value is sufficient to reverse the ionic ligand field theoret ical  
order  (e, e) > (tz, t2) > (t2, e) to  the order  (e, e) > (tz, e) > (t2, tz). 

More  precisely, 

(e ,e ) - ( t z ,  e )=O.165eV,  (t2, e ) - ( t z ,  tz)=O.138eV.  

for  the ionizat ion case the best  fit of results f rom three configurat ions e 2, e 1"75 
and e 15 (Table 3) are 

X ~  
ee (n) = - 1 9 . 2 1 0 +  6 .198n (10') 

e t x~ (m) = - 17.878 + 6 .044m.  (11') 

Table 3. R S C F - X a  results for fractionally ionized CrCI4 

Configuration Molecular charge e~ x'~ (eV) e x~ (eV) 

e2~ ~ 0.0 - 6 . 8 1 3 8  -5 .7913  
e 1.75to 0.25 - 8 . 3 6 2 6  - 7 . 2 9 8 6  

el5~ ~ 0.50 -9 .9131  - 8 . 8 1 3 5  
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From Eqs. (10-11) one obtains values of the integrals: 

(e, e) = 6.198 eV, (t2, e) = 6.044 eV, (e) = -16.122 eV 

and from Eqs. (4) or (8) and (11) the other values: 

(t2, tz) = 5.906 eV, (re) = -14.926 eV. 

The (t2, e) value obtained from Eqs. (3) or (7) and (10) is 

(t2, e) = 6.033 eV. 

The 10 Dq value from the just calculated values of (t2) and (e) is 10 Dq = 1.16 eV. 
This last value shows the self-consistency of the results. 
We have calculated six different spin polarized configurations for CrCI4 including 
the ground state, four excited states and one ionized state. The results are 
summarized in Table 4. The linearity relationship for the case of polarized SCF 
Xa eigenvalues as a function of their occupation numbers is still confirmed from 
the study of the system e~tz~ (Fig. 3). 

The integrals calculated from Eq. (15) are reported in Table 5. One could notice 
that the (d~,dt)-(dz, d~) difference cannot be negligible in some cases; for 
instance, the relative difference is only 1% for (t2, t2), 2% for (e, e) but 10% for 
(e, t2). This large discrepancy may induce large errors into an attempt to deduce 
Gritfith's parameters from these integrals. For example, from (16a), one obtains 

1 
e = ~[3(et, e~) - (e~, et)] = 7.058 eV 

1 
f = ~[(et, e+) - (e t, et)] = 0.400 eV 

but one also has 
1 

f = ~[(e,, e,) - (e~, e,)] = 0.320 eV 

which is numerically quite different. 

Table 4. PSCF-Xa  results for CrCl4 

e~, t2, r e,~ t2,~ 

Occupation 1.75 0.0 0.25 0.0 
-re (eV) 7.555 6.391 6.055 5.180 
Occupation 1.75 0.0 0.0 0.25 
- e  7.598 6.425 6.105 5.222 
Occupation 2.0 0.0 0.0 0.0 
- e  7.755 6.559 5.896 5.047 
Occupat ion 1.75 0.0 0. 9 0.0 
- e  9.221 8.010 7.564 6.660 
Occupation 1.75 0.25 0.0 0.0 
- ~  7.776 6.577 5.938 5.081 
Occupation 1.5 0.5 0.0 0.0 
- e  7.796 6.598 5.976 5.113 
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Fig. 3. Linear  dependence  of the PSCF Xc~ 
eigenvalues 

(m)  Ee 

-6.5~ 

-6.! 

-6.56 

-6.55 

X~ 

s 2 

-6,59 

/ 
PSCF-X ~- of CrCl 4 

system en t t ? f  (m=2-n) 

0.5 1.0 1.5 

(e.v) 

-7.79 

-7.78 

-7.77 

-7.76 

-7.75 
nor m 

Table  5. P S C F - X a  average electron repuls ion  
pa ramete r s  and one  electron orbital  energies (eV) 

(e,, e,) = 5.860 (tzt, t21,) = 5.702 
(et, t21,) = 5.778 (t2t, t2,t) = 6.452 
(el,, e,) = 6.659 (t2j,, t2+) = 5.791 
(e t, t2j,)= 6.493 (e;, t2-r)= 6.513 
(e~, e,;) = 6.018 (e+, t2;) = 5.270 
(el,) = - 1 6 . 5 4 5  (e+) = - 1 6 . 2 0 3  
(tz?) = -- 15.266 (t2~) = -- 15.143 
(t20 - (et) = 1.279 (t2+) -- (e+) = 1.060 
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Table 6. Configuration centers energies (in cm -1) relative to the ground state configuration e~ 

Configuration AE Ref. [7] Method used in the calculation 

ett2t 9 678 11 650 
ettvt 9 643 11 650 
ere ~ 9 203 8 134 
ett2+ 16 460 14 196 
t~t 19 418 20 181 
t2tt2~ 26 160 25 378 

Slater transition state method 
Linearity relation Eq. (17) 
Linearity relation Eq. (17) 
Linearity relation Eq. (17) 
Linearity relation Eq. (17) 
From the known values of the two 
electron parameters of this configur- 
ation Table 5. 

a Calculated from the Griffith parameters and 10 Dq given in Ref. [7]. 

H o w e v e r ,  we can ca lcu la te  the  conf igura t ion  cen te r s  ene rg ies  f rom any two 
conf igura t ions  e i the r  by  the  t r ans i t ion  s ta te  m e t h o d  or  by  using the  l inea r i ty  Eq.  
(5) or  the  m o r e  gene ra l  one :  

et(m +1)-e~(n -�89 = (at-ae) +(m + �89 (n -~)1 b~. 

The  resul ts  a re  g iven in T a b l e  6 and  we not ice  tha t  the  conf igura t ions  cen te rs  
energ ies  ca l cu la t ed  f rom X a  are  in good  a g r e e m e n t  c o m p a r e d  with tha t  ca lcu la ted  
f rom Grif f i th ' s  p a r a m e t e r s  de r i ved  p rev ious ly  [7]. 

4. Conclusions 

The  MS X ~  m e t h o d  can be  used  to ex t rac t  some  useful  l igand  field p a r a m e t e r s ,  
ut i l iz ing the  l inear  r e l a t i on  found  b e t w e e n  the  Xa e igenva lues  of the  l igand  field 
s ta tes  and  the i r  o c c u p a t i o n  n u m b e r s  of the  m e t a l  complex .  

A t  leas t  two d i f fe ren t  conf igura t ions  of the  type  e nt'~ are  to be  ca lcu la ted  by  
the S C F  MS X a  to eva lua t e  10 D q  and  e. I t  was f o u n d  tha t  the  l igand field 
m o d e l  a f te r  K o i d e  and  Pryce ,  is conven ien t ly  r e l a t ed  to the  Xa m e t h o d  m o r e  
than  o t h e r  m o d e l s  due  to  the  sphe r i ca l - l i ke  po t en t i a l  used  in the  Xa scheme.  

A l t h o u g h  10 Dq(1)  canno t  eas i ly  be  r e l a t ed  to  e x p e r i m e n t ,  the  10 Dq(2)  can. 
The  va lue  of the  l a t t e r  is ca l cu la t ed  t h rough  the express ion  

10 Dq(2)  = 10 Dq(1)  - e (1 - e ) ( A  - 8B) = 8592 cm -1 

which is in g o o d  a g r e e m e n t  with the  e x p e r i m e n t a l  va lue  10 l l 0 c m  -1 (A = 
130791,  B = 835 cm -1 f rom Ref .  [7] and  e = 0.009).  
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